4,947 research outputs found

    Chemical Identification of Ions in Doped NaCl by Scanning Force Microscopy

    Get PDF
    A quantitative comparison between experiment and theory is presented, which shows that all ions of the Suzuki structure on (001) surfaces of Mg2+ or Cd2+ doped NaCl crystals can be identified despite the tip-surface distance, differences in impurity chemistry, and surface termination. The identification can be used to calibrate the potential of the tip's last atom, and it is proposed to use these surfaces for better characterization of deposited nano-objects.Peer reviewe

    Defect mediated manipulation of nanoclusters on an insulator

    Get PDF
    With modern scanning probe microscopes, it is possible to manipulate surface structures even at the atomic level. However, manipulation of nanoscale objects such as clusters is often more relevant and also more challenging due to the complicated interactions between the surface, cluster and apparatus. We demonstrate the manipulation of nanometer scale gold clusters on the NaCl(001) surface with a non-contact atomic force microscope, and show that the movement of clusters is in certain cases constrained to specific crystallographic directions. First principles calculations explain this kinetic anisotropy as the result of the cluster attaching to surface defects: cation vacancies allow the clusters to bond in such a way that they only move in one direction. Constraining the movement of clusters could be exploited in the construction of nanostructures or nanomechanical devices, and the manipulation signatures may also be used for identifying cluster-defect complexes.Peer reviewe

    Unambiguous Interpretation of Atomically Resolved Force Microscopy Images of an Insulator

    Get PDF
    The (111) surface of CaF2 was imaged with dynamic mode scanning force microscopy and modeledusing atomistic simulation. Both experiment and theory showed a clear triangular contrast pattern in images, and theory demonstrated that the contrast pattern is due to the interaction of a positive electrostatic potential tip with fluorine ions in the two topmost surface layers. We find a good agreement of position and relative height of scan line features between theory and experiment and thus establish for the first time an unambiguous identification of sublattices of an insulator imaged by force microscopy.Peer reviewe

    Role of tip structure and surface relaxation in atomic resolution dynamic force microscopy: CaF2(111) as a reference surface

    Get PDF
    By combining experimental dynamic scanning force microscope (SFM) images of the CaF2(111) surface with an extensive theoretical modeling, we demonstrate that the two different contrast patterns obtained reproducibly on this surface can be clearly explained in terms of the change of the sign of the electrostatic potential at the tip end. We also present direct theoretical simulations of experimental dynamic SFM images of an ionic surface at different tip-surface distances. Experimental results demonstrate a qualitative transformation of the image pattern, which is fully reproduced by the theoretical modeling and is related to the character of tip-induced displacements of the surface atoms. The modeling of the image transformation upon a systematic reduction of the tip-surface distance with ionic tips allows an estimate of the tip-surface distance present in experiment, where 0.28–0.40 nm is found to be optimal for stable imaging with well-defined atomic contrast. We also compare the modeling with ionic tips to results for a pure silicon tip. This comparison demonstrates that a silicon tip can yield only one type of image contrast and that the tip-surface interaction is not strong enough to explain the image contrast observed experimentally. The proposed interpretation of two types of images for the CaF2(111) surface can also be used to determine the chemical identity of imaged features on other surfaces with similar structure.Peer reviewe

    High-resolution scanning force microscopy of gold nanoclusters on the KBr (001) surface

    Get PDF
    In this study we use a combination of dynamic scanning force microscopy experiments and first-principles simulations to study the imaging process of gold nanoclusters adsorbed on the (001) surface of KBr. In previous experiments atomic resolution was readily obtained on the KBr substrate. However, it was not possible to resolve atoms within the clusters themselves. This correlates with imaging simulations we present here using several different probable tip models: measurable contrast was readily achieved on the KBr surface and on the gold (001) surface, but simulations on the clusters demonstrated poor contrast for all tips. We further consider the role of cluster charging in the tip-surface interaction, and the role that surface defects play in the properties of adsorbed clusters.Peer reviewe

    Imaging the real shape of nanoclusters in scanning force microscopy

    Get PDF
    A quantitative comparison between experiment and theory is given for the constant height mode imaging of metal nanoclusters in dynamic scanning force microscopy. We explain the fundamental mechanisms in the contrast formation with the help of the system Pd/MgO(001). The comparison shows that the shape and size of nanoclusters are precisely imaged due to the sharpness of the tip’s last nanometer. This quantitative comparison proves our previously proposed model for the contrast formation.Peer reviewe

    Portable, Non-Invasive Fall Risk Assessment in End Stage Renal Disease Patients on Hemodialysis

    Get PDF
    Patients with end stage renal diseases (ESRD) on hemodialysis (HD) have high morbidity and mortality due to multiple causes, one of which is dramatically higher fall rates than the general population. The mobility mechanisms that contribute to falls in this population must be understood if adequate interventions for fall prevention are to be achieved. This study utilizes emerging noninvasive, portable gait, posture, strength, and stability assessment technologies to extract various mobility parameters that research has shown to be predictive of fall risk in the general population. As part of an ongoing human subjects study, mobility measures such as postural and locomotion profiles were obtained from five (5) ESRD patients undergoing HD treatments. To assess the effects of post-HD-fatigue on fall risk, both the pre- and post-HD measurements were obtained. Additionally, the effects of inter-HD periods (two days vs. three days) were investigated using the non-invasive, wireless, body-worn motion capture technology and novel signal processing algorithms. The results indicated that HD treatment influenced strength and mobility (i.e., weaker and slower after the dialysis, increasing the susceptibility to falls while returning home) and interdialysis period influenced pre-HD profiles (increasing the susceptibility to falls before they come in for a HD treatment). Methodology for early detection of increased fall risk – before a fall event occurs – using the portable mobility assessment technology for out-patient monitoring is further explored, including targeting interventions to identified individuals for fall prevention

    AFM tip characterization by Kelvin probe force microscopy

    Get PDF
    Reliable determination of the surface potential with spatial resolution is key for understanding complex interfaces that range from nanostructured surfaces to molecular systems to biological membranes. In this context, Kelvin probe force microscopy (KPFM) has become the atomic force microscope (AFM) method of choice for mapping the local electrostatic surface potential as it changes laterally due to variations in the surface work function or surface charge distribution. For reliable KPFM measurements, the influence of the tip on the measured electrostatic surface potential has to be understood. We show here that the mean Kelvin voltage can be used for a straightforward characterization of the electrostatic signature of neutral, charged and polar tips, the starting point for quantitative measurements and for tip-charge control for AFM manipulation experiments. This is proven on thin MgO(001) islands supported on Ag(001) and is supported by theoretical modeling, which shows that single ions or dipoles at the tip apex dominate the mean Kelvin voltage.Peer reviewe

    XSS Vulnerabilities in Cloud-Application Add-Ons

    Full text link
    Cloud-application add-ons are microservices that extend the functionality of the core applications. Many application vendors have opened their APIs for third-party developers and created marketplaces for add-ons (also add-ins or apps). This is a relatively new phenomenon, and its effects on the application security have not been widely studied. It seems likely that some of the add-ons have lower code quality than the core applications themselves and, thus, may bring in security vulnerabilities. We found that many such add-ons are vulnerable to cross-site scripting (XSS). The attacker can take advantage of the document-sharing and messaging features of the cloud applications to send malicious input to them. The vulnerable add-ons then execute client-side JavaScript from the carefully crafted malicious input. In a major analysis effort, we systematically studied 300 add-ons for three popular application suites, namely Microsoft Office Online, G Suite and Shopify, and discovered a significant percentage of vulnerable add-ons in each marketplace. We present the results of this study, as well as analyze the add-on architectures to understand how the XSS vulnerabilities can be exploited and how the threat can be mitigated
    • …
    corecore